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LONG COMMON SUBSEQUENCES AND THE PROXIMITY

OF TWO RANDOM STRINGS

By

J. Michael Steele

I. INTRODUCTION

Long molecules such as proteins and nucleic acids can be thought

of schematically as sequences from a finite alphabet a. From an

evolutionary point of view it is natural to compare molecules by

considering their common ancestors, and in schematic terms this reduces

to the problem of considering the longest common subsequence of two

given sequences.

Sankoff (1972) gave an efficient algorithm for calculating the

length of the longest common subsequence. Subsequently, Sankoff and

Cedergren (1973), and Sankoff, Cedergren, and Lapalme (1976) considered

a number of empirical cases and conducted some Monte Carlo investigations.

The first formal probabilistic analysis of the problem of long common sub.-

sequences was initiated in Chvital and Sankoff (1975). To describe thedr

work we first introduce some notation.

By Xi and X1, 1 < i < , we denote two sequences of independent,

and identically distributed random variables with values in (3. The

random variable of main interest is

L :-maxk: X =l. X -X.' I...,X X' where
n il1 ill 12 J2 ik Jk

1 i -. L n and l<J<J2 "< J <Jki
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In words, L is the largest cardinality of any subsequence common to

the sequences (Xl,X 2 ... ,X) and (X,X 2' ...' X).

Under the assumption that (Ir = k and that X and X1 are both

uniform on a, Chvatal and Sankoff proved the existence of the limit

of the means,

(1.1) lnm ELn/n - c
n

Among other results, Chvital and Sankoff obtained upper and lower

bounds on ck' These authors proved no results for Var Ln, but on

the basis of a Monte-Carlo study they were lead to conjecture

Var L - o(n 2 / 3 ) .
n

Deken (1979) was able to sharpen the bounds on c , and also notedk

that as a consequence of Kingman's subadditive ergodic theorem (Kingman

(1968)), that one actually has

(1.2) lim L /n - c a.s.

where c depends on the distributions of the processes (XiYi): l<i < .

This result naturally entails Var Ln - o(n 2), but no futher

progress was made on the variance problem.

The present article takes up several aspects of the study of Ln .

In the second section as an elementary application of an inequality of

Efron and Stein (1980), it is proved that Var L - 0(n). This makesn

only modest progress on the Chvital-Sankoff conjecture that Var L -o(n2/ 3 ),

but it still serves to supplement (1.2) with a rate of convergence result.
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The third section takes up the question of the behavior of Ln

under more general assumptions than independence. A simple complement

of Kingman's subadditive ergodic theorem (Kinsman (1973)) is derived

and then applied to Ln. The coupling method which is used here (or

the Radon-Nikodym method which is sketched) may likely be of use in

many other problems where subadditivity is available, but stationarity

is absent.

The fourth section branches out from the explicit analysis of Ln

It addresses the question of whether there exist statistics which are

more tractable than Ln, but which still reasonably measure the genetic

proximity of long molecules. The principal new candidate is Tn , the

total number of common subsequences. Here one can compute ET exactly,

but we note Tn has other draw-backs to its analysis.

The final section makes brief comment on some open problems and

related literature.

Acknowledgement. The observation that absolute continuity provides a

second proof of Corollary 1 in Section III is due to Steve Lalley who

kindly commented on an earlier draft on this article.
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II. A VARIANCE BOUND

Let S(vlv 2 ,...v n- i ) denote any real valued function of n-1

vectors v t e NRd ; and suppose Vt, 1 < i < -, is any sequence of

independent, identically distributed, random vectors in d . We

then define new random variables S, M S(Vi V2,...,ViIV i+ 1 '...- n

for 1 < i< n, and we further set S I n S Tu-'
n2

Jackknife estimate for the variance of S is E i-1 (Si-S.)
2. and

Efron and Stein (1980) have proved the very useful inequality,

n 2
(2.1) Var(S.) < E I(S -S.).

The main point of this section is to show that (2.1) leads to

the bound

(2.2) Var L O O(n)n

under the general assumption that V, - (XiXi) are independent, and

identically distributed. In fact, one can prove the following result.

Theorem 1. For each n, suppose there is defined a function

S(XlX2,...,xn) from (Itd) to 3R. Suppose also that Vi.

1 < i < -, is any sequence of independent random vectors in itdN

and for 1< i<n, l<n < - set

(2.3) S, n - S(V 1 V2 ,...,ViVi+,...,V n )

4



If E(S - Sj n)2 is bounded for all1 < I < J :j n and I<n<i~n J 1 o

then

(2.4) Var S(Vi,V 2 ,...,V) - O(n)

Proof. Let the bound on E(S ,n - SJ n )2 be B. Fix n, define

S. ._In 1 Sin, and letn i- i~n

(2.5) Dn - s(V1 v 2 ' . . . IVn- so

1 n1Sn 1 (s(,vV2,...,v) -s(vlv- 2i ,v,)
- ~ ((ViS2,...V i)S(Vi •29 •.,Vi 1 vi~i. .. V .

i-i

By Schwarz' inequality,

(2.6) Var S(VlV2, .,Vn) < Var(So)+Var D +2(Var S.)l/2(Var Dn)l/2

and

(2.7) Var D < ED 2 < B.n- n -

Since 2 < B one also has E((Si,n-S.) 2  < B. So

inequalities (2.1), (2.6). and (2.7) entail

(2.8) Var S(ViV 2 ,...,V 11 <_ nB+B+2(nB)112 B 1/2 -B( 1/2+1)2
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This completes the proof of the Theorem with a very specific form

of the O(n) term 3.

Returning to Ln we note that for V1 - (XiX) and

C i- {12,... that Theorem 1 is applicable to S(V1 V2 1..., Vn )

L n(VI,V2,...V n) L n. Since

(2.9) 0 < L(,V 2 ,..,V) -L(V1,V...,VtIV+I...,V ) < 1

it is trivial that (2.8) can be taken with B - 1. In summary we have

the following bound.

Corollary 1. If (Xi,X') are i.i.d. with values in G x G then

1/2 2
(2.10) Var L 1 < (n2+ 1)

By the usual Borel-Cantelli and subsequence arguments together with

(2.9) and (2.10) one can prove a rate result.

Corollary 2. We have for all E > 0 that

(2.11) L - E Ln - o(n3 / 4 + ) with probability onen n

Since the techniques for proving (2.11) are well-known and since the

result is not the best possible, there is no reason to include the proof.

This is nevertheless the first rate result available on L , since such

rates cannot be obtained in general from the subadditive ergodic theorem

(c.f. Hamersley (1978), p. 670).
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III. NON-STATIONARY SEQUENCES

By Deken's observation we know Kingman's theorem implies that Ln /n

converges almost surely under the assumption that the Vi, 1 < i <

form a stationary sequence. The point of this section is to give a

very simple illustration of how Kingman's theorem can also be used for

non-stationary processes. Naturally, one must appeal to some underlying

asymptotic stationarity, but the resulting class of results seem useful

enough to merit recording. In particular, one should compare the present

result to the "sub-stationary" subadditive ergodic theorem of Abid (1979).

That result apparently does not suffice for the application to Ln  given

here, and it is considerably more complicated.

By a subadditive sequence of function on E we denote a sequence

h : En - ] which satisfies
n

(3.1) h m3 (el,e 2,...,en4m ) < h(el,e 2, ... e +hn(em+l'en+2,...,eu4 ) .

As an example, we note that if E -C x Gand ei - (ai,aP), then

letting hn(el,e 2 ,...,en) denote the length of the longest common

subsequence of (al,a2 ,... ,an) and ( one has (3.1).

Because of the applications we have in view, we will also focus on

monotone subadditive functions, i.e. those functions which satisfy

(3.1) as well as

(3.2) hxn_• (x Vx , . ,) for all m < n

and (xx 2 , ... n}
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We will say that a stochastic process fX on the discrete

state space E has a stationary ergodic coupling if there is a

stationary ergodic process Up 00 on the same probability space
i-1

such that Zi = (Xi,Xi) is a coupling, i.e. such that the stopping

time T - minfi: X, = Xj) is finite with probability one.

It is well-known that couplings are a convenient and powerful

way of expressing the asymptotic properties of stochastic processes

(see e.g. Griffeath (1978)). The next result illustrates this ease

of application.

Thereom 2. Suppose that h is a positive and monotone sequence

of subadditive functions on E. If {X iG is a stochastic process
i-l

with state space E for which there is stationary ergodic coupling then

(3.3) lim h (X1,X2,.. .,X)/n = c a.s.

for some constant c.

Proof. Let X')' denote the stationary ergodic process to

which 1XI0  may be coupled, and let T be the coupling time, i.e.
i=l

= min{i: X, = X'.. The doubly indexed process Yst- ht-s(X' s+ ""')

is easily checked to have the properties:

(3.4a) Y + whenever s < t < u

(3.4b) The joint distributions of the shifted process {Y lt+l1

are the same as those of the unshifted process.

and
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(3.4c) The expectations gt ETot satisfy gt > -At for some

A and for all t.

The properties (3.4a-c) are exactly the hypotheses of Kingman's

theorem (Kingman (1973)), 50 by its conclusion we have

(3.5) lir Y0 /n - li h (x, ,x: ,.... X)n - c a.s.n -)•C , n - 00 an8

Here, to conclude that the limit is indeed a constant we have made

use of the fact that Kingman's theorem assures that the limit is shift

W
invariant and we have assumed that [X'} is ergodic.i i-i

Now we have by (3.1), (3.2), and the definition of T that

(3.6 hnX'2''"Xn) < T(Xl'X2' .. XT n "nT" T+I' T+2'" Xn)

Sh(X, X 2,...,X ) + h (XIX ' .. x )
n 1 ' i't+'t+2 n

-.. T 1 2' T--'n'

Since T < - -.'-h probability one, (3.4) and (3.6) yield

(3.7) li h(XlX 2,...,X_)/n < c
n-+o

To handle the limit infimum we need only consider the analogous inequality

with the variables reversed, i.e.

(xI, X2 .... < h (X' V V + h(XiX 2,...,x nn.. n T--1, 2,. .  T) n)"

and we obtain
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c < lim hn(Xl,X2, ...,Xn)/n

to complete the proof *.

Corollary 1. If Vil 1 < i < -, is an irreducible, aperiodic,

positive recurrent Markov chain with state space G x C then no matter

what the initial distribution Ir(v) = P(V1 =v), one has with probability

one

lim Ln(VIV2,...,Vn)/n = c

for some constant c.

To prove the corollary one only has to exhibit an appropriate

coupling; and, in this case, the existence of such a coupling is well-

known (see e.g. Hoel, Port, and Stone (1972)).

One can also prove the above corollary without recourse to coupling;

one can use an absolute continuity argument. Under the hypotheses of

the corollary there is a stationary measure w'. Moreover, the initial measure

7r is absolutely continuous with respect to 7' (since by the irre-

ducibility and positive recurrence Tr'(al,a 2 ) > 0, for all (al,a2) C axG).

If {Vj: 1 < i < -} is the process with initial distribution r' and

the same transitions function as {Vi: I < i < -}, it is further true

that the measure p for the infinite process {Vi: 1 < i <-} is absolutely

continuous with respect to that p' for {V!: 1 < i < a). Since

L(VI,V2,...,V') satisfies the hypotheses of Kingman's subadditive

ergodic theorem, {f: lim L(Vl,V 2 ... V;)/n c) is a Bet of

measure one. By absolute continuity of p << p' the set

fw: lim L(V1 ,V2 ,...,Vn)/n - c) has P measure one. This is precisely

the conclusion of the corollary.
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IV. ALTERNATIVE STATISTICS

The random variable L(V 1 ,V 2 ... ,Vn) certainly is an interesting

measure of genetic proximity, but it appears to be hard to handle. In

such a situation it is natural to look for suitable alternatives.

To introduce one such alternative let (X1 ,X2 ,...,X) and

(X1,X2,... ,X') denote two sequences of values from C. By A, B

we denote subsets of {1,2,...,n), say A - {illi 2 ,...''h and

B - fJlJ2,..Jk )  if JAI -IBI - k. Next we set

(4.1) p(AB) = as X M'X1 Xi"X'J ,'X.X' k, or not.
(0 1 Jl '2 J2 * k

The statistic of interest in this section is

(4.2) Tn - I p(A,B)
A,B

where the sum is over two pairs of subsets of f1,2,...,n) and it is

understood that p(A,B) is taken to be zero if the cardinalities of

A and B differ, i.e. IAI 0 IBI.

If the Xi , 1 < i < - and the Xj, 1 < i < = are all independent,

and P(Xi - aj) - pj, P(Xj - aj) - pj for all i, J, it is easy to

see that

(4.3) E T n I (k PiP)
k-0 J1



This explicit formula is quite a contrast to the Mystery surrounding

ELn under similar hypotheses. A number of qualitative properties of ETn

are also evident from (4.3). In particular, if we set pi S p for

1 < i < i - a and take G finite, then

n a 2 k
(4.4) d(d) " E T m I()

I (n) 1P2p n k-0 J=l

is easily checked to beaSchur-convex function, i.e. 0() < Opr)

whenever p is majorized by '. (For an elaboration of this terminology

see Hardy, Littlewood, and Polya (1951), and for an elaboration of the

many consequences of Schur-convexity see the treatise by Olkin and Marshall

(1979)).

Despite the mathematical simplicity of T as evidenced by (4.3)

and (4.4), it provides only a partial surrogate for L . In the firstn

place Tn  tends to be very large, and there is no efficient algorithm

for finding T . Thus,from a computational view point, L is a superiorn n

statistic. Also, as of yet, there is no information at all about the

variance of Tn or of its limit properties.
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V. OPEN PROBLEMS

The main open problems concern the expectations

(5.1) 4n(p) - EL

under the hypotheses of independence and identical distribution as applied

in (4.4).

For one explicit conjecture, it seems inevitable that *n(p) is

Schur convex (just as (p) was proved to be). Perhaps it would be

easier to consider the limit,

(5.2) 4'(p)- lim*' (p)/n

Again, it must be true that *(p) is Schur convex, but so far even this

has not been proved.

The older problems concern the numerical value of *(p). Perhaps

progress can be made on this problem by taking a more algorithmic point

of view. Is there an efficient algorithm for computing the approximate

value of *(p) or *n(p) with a guaranteed error bound?

Given the results of Section 2, it is very interesting to see if one

can improve (2.10) to show Var L - o(n). This would be the first
n

really non-trivial step toward the Chvital-Sankoff conjecture, and it

would seem to require some genuinely new combinatorial insight to settle

the point one way or the other.

Finally, the main scientific problem is to find a replacement for

L which still has a genetic justification. The null distributions of

13



L seem like they will always be out of reach, and major progress willn

be made when L finds a suitable substitute. The statistic T is a
n n

reasonable first choice, but it leads to its own problems. For example,

what is the order of the growth of Var T ?
n

In the search for surrogates for Ln, it may be critical to

consider the variety of problems to which it has been applied. In addi-

tion to the application to molecule comparisons noted previously, there

is a natural application in communications. In particular, Bradley and

Bradley (1978) have applied L in the study of bird songs.n

There are also a variety of potential uses in computer science and

for an introduction there it seems useful to refer to the papers of

Aho, Hirschberg, and Ullman (1976), Okuda, Tanaka, and Kasai (1975),

Selkow (1977), and Wagner and Fischer (1974). In at least some of these

papers in which Ln has been used, it seems there must exist a more

tractible substitute.

14
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